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Kinematic Characteristics and
Classification of Geared
Mechanisms Using the Concept of
Kinematic Fractionation
A methodology based on the concept of kinematic fractionation for the revelation of
kinematic characteristics and classification of geared mechanisms is presented. It is
shown that structurally nonfractionated geared mechanisms can be considered as the
combination of kinematic units (KUs). Each KU is considered as the basic motion trans-
mission module inside a geared mechanism. Admissible connections of KUs are identified
according to the structural characteristics of one- and two-degree-of-freedom geared
mechanisms of up to four KUs. Graphs in the atlas of the geared mechanisms are clas-
sified based on the configurations of KUs. Such configurations are then used to construct
possible propagation paths of motion via the assignments of input and output links. Since
the propagation paths can be modeled by the control block diagram problems, the kine-
matic relations between input and output links are formulated to gain matrices. Accord-
ing to the types of entities in a gain matrix, various kinematic behaviors are disclosed. It
is believed that such kinematic characteristics can be readily transformed into the func-
tional requirements, and the synthesis of geared mechanisms of up to four KUs can be
accomplished much easier. �DOI: 10.1115/1.2936894�
Introduction
Geared mechanisms have been widely used as power transmis-

ion and force amplification devices in machines and vehicles.
he input power is transmitted to the output link through a power
ow path made up of meshing pairs and their corresponding car-
iers. Through analysis, kinematic relations between input and
utput links of a geared mechanism are evaluated. Although the
abular and formula methods, etc., have been well developed and
an solve for almost all gear train problems, such a procedure
ecomes tedious when gear trains are complex. In virtue of graph
heory �1�, the concept of fundamental circuits was applied to the
inematic analysis of geared mechanisms �2,3�. By solving a set
f linear equations simultaneously, the kinematic relations can be
btained through a series of arithmetical manipulation, where ki-
ematic insights are barely revealed. Chatterjee and Tsai �4� de-
omposed an epicyclic geared mechanism into several fundamen-
al geared entities and applied the concept to the speed ratio
nalysis and power loss problems. However, this study is only
pplicable for the reverted type of epicyclic gear trains and for the
nalysis of kinematic relations among coaxial links.

Chen and Shiue �5� showed that a geared robotic mechanism
an be fractionated into input units and transmission units. Chen
6� further verified the forward and backward gains of each unit
nd proposed a unit-by-unit evaluation procedure for the kine-
atic analysis of such geared robotic mechanisms. Although this

pproach is straightforward and provides clear kinematic insights
n torque transmission problems, it is restricted to the analysis of
eared robotic mechanisms.

Based on the concept of kinematic fractionation developed by
iu and Chen �7�, motion transmission inside a geared mechanism
an be considered as motion transmitted from input to output via
series of kinematic units �KUs�. Liu et al. �8� further unveiled
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the topological structures among fractionated KUs, where two
types of structures were identified. The local gain of each indi-
vidual KU was formulated, and the input-output relations of a
geared mechanism were established. However, how the global ki-
nematic relations of geared mechanisms are related to the configu-
rations of KUs is not discussed.

Rao �9� applied genetic algorithm for the design of a geared
mechanism with high speed ratio or transmission efficiency.
Based on the concept of fundamental KUs, Kahraman et al. �10�
proposed a methodology for the determination of the speed ratio
for each gearing pairs according to the configuration of the
mechanism and the input and output requirements. Salgado and
Del Castillo �11� established a power flow map by drawing the
gearing power and transmission ratio curves for the design of a
planetary gear train. Talpasanu et al. �12� developed structure ma-
trices from the spanning tree and joint position of a geared mecha-
nism for the analysis and synthesis of parallel axis epicyclic gear
trains. Although the problems regarding the synthesis of geared
mechanisms have been studied intensively and the admissible one
and two degree-of-freedom �DOF� geared mechanisms up to six
or higher links have been enumerated, few efforts have been fo-
cused on how these admissible structures can be applied to the
real engineering world. The design of geared mechanisms based
on the functional kinematic requirements still relies heavily on the
expertise of engineers and the trial-and-error process.

In this paper, structural characteristics of geared mechanisms
based on the concept of kinematic fractionation are explored to
obtain the configurations of KUs in geared mechanisms. Accord-
ing to the configurations, the propagation paths of motion and
their corresponding global gains are formulated. The kinematic
characteristics of geared mechanisms are revealed and classified.
It is believed that the classification of geared mechanisms accord-
ing to the types of kinematic characteristics based on the concept
of kinematic fractionation provides more kinematic insights, and
the design process of one- and two-DOF geared mechanisms with

up to four KUs can be dramatically enhanced.
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Concept of Kinematic Fractionation
In the graph representation of geared mechanisms, links are

epresented by vertices, gear pairs by heavy edges, and turning
airs by thin edges; each thin edge is labeled according to its
ssociated axis location. Liu and Chen �13� defined the KU as a
asic kinematic structure in geared mechanisms. Each KU is one-
OF and is composed of a carrier and all gears on it. The identi-
cation of KUs in a geared mechanism �7� is briefly described as
ollows with an illustration of a five-link gear kinematic chain
GKC� of graph 1400-1-4 �1� in Fig. 1. The functional schematic
nd the graph representation of the five-link GKC are shown in
igs. 1�a� and 1�b�, respectively. The procedure starts with the
onstruction of the displacement graph �1� formed by all gearing
airs, as shown in Fig. 1�c�. In the displacement graph, the mesh-
ng gears and their associated axes are labeled under the vertices,
nd carriers are labeled above the heavy edges. Then, the dis-
lacement graph is segmented into subgraph�s�, each with only
ne carrier label. Figure 1�d� shows the disconnected displace-
ent graph of Fig. 1�c�. Add a carrier vertex to each segment of

he disconnected displacement graph and connect the gear-carrier
airs by thin edges labeled with axis location. Each subgraph is
eferred to a disconnected KU, as shown in Fig. 1�e�. Since ver-
ices 1 and 5 are coaxial and common to both subgraphs, a thin
dge can be formed by coaxial rearrangement without changing
he kinematic characteristics of the mechanism �8�. As a result, the
eared mechanism of Fig. 1�a� is fractionated into two resultant
Us, as shown in Fig. 1�f�.

Topological Characteristics of a Kinematic Unit

3.1 Common Linkage of KUs. The topological connection
f KUs is determined by the structural characteristics of geared
echanisms. Since a KU does not exist alone within a geared

ig. 1 One-DOF, five-link GKC of graph 1400-1-4 †1‡. „a… Func-
ional schematic. „b… Graph representation. „c… Displacement
raph. „d… Disconnected displacement graph. „e… Disconnected
Us. „f… Fractionated KUs. „g… Block configuration of KUs. „h…
ropagation path of KUs.
echanism, unless the mechanism itself is a single KU, it is con-
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nected to other KUs through certain common vertices and thin
edges. These common vertices and thin edges shared by the adja-
cent KUs are referred to common linkages of KUs. Two types of
common linkages among KUs are identified in all GKCs of one-
DOF up to six links and two-DOF up to seven links �8�:

�1� two-link chain type common linkage: the common linkage
that is shared exclusively by two KUs is referred to the
two-link chain type, as shown in Fig. 1�f�, where the mo-
tion between KU1 and KU2 is transmitted through a com-
mon linkage of 1–5. Such a two-link chain type common
linkage of KUs can be represented by the block configura-
tion shown in Fig. 1�g�.

�2� coaxial-triangle type common linkages: the common link-
ages that are shared by three KUs are referred to the
coaxial-triangle type. Figure 2�a� shows a functional sche-
matic of a two-DOF, six-link GKC of graph 4-1-1 �14�, and
its graph representation is shown in Fig. 2�b�. The common
linkages among KUs, as shown in Fig. 2�c�, is referred to a
coaxial-triangle type, where the output motions of KU1 and
KU2 are transmitted through the common linkages of 2-4,
2-5, and 4-5 to KU3. Because of this, the block configura-
tion of the coaxial-triangle type common linkages is repre-
sented by a node connecting to three KUs, as shown in Fig.
2�d�.

3.2 Rule of Connection of KUs. Based on the structural char-
acteristics of geared mechanisms, the DOF of a geared mechanism
can be expressed as

F = e − h �1�

where e and h are the numbers of turning-pair and gearing-pair
edges in the graph representation of a geared mechanism,
respectively.

Similar to Eq. �1�, since the DOF of each KU is equal to 1, the
numbers of turning-pair edges and gearing-pair edges of the ith

Fig. 2 Two-DOF, six-link GKC of graph 4-1-1 †14‡. „a… Func-
tional schematic. „b… Graph representation. „c… Fractionated
KUs with coaxial-triangle type common linkages. „d… Block con-
figuration of KUs. „e… Propagation path of KUs.
KU in a geared mechanism can be related by
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ei = hi + 1 �2�

For a geared mechanism containing u fractionated KUs, the
otal number of the thin edges possessed by all fractionated KUs
an be summed up as

�
1

u

ei = �
1

u

�hi + 1� = �
1

u

hi + u = h + u �3�

It is observed from Eq. �3� that when a geared mechanism is
ractionated into KUs, the total number of the thin edges in-
reases, depending on the number of KUs, while the total number
f heavy edges remains unchanged. Referring to the two-KU ex-
mple of Fig. 1�f� and the three-KU graph of Fig. 2�c�, both
raphs contain three heavy edges, while the total numbers of thin
dges possessed by the two-KU and three-KU graphs are five and
ix, respectively.

Alternatively, according to the Grübler–Kutzbach criterion, the
OF of a geared mechanism can also be represented as

F = 3�v − 1� − 2e − h �4�

here v is the number of links of a geared mechanism or the
umber of vertices of a graph.

Equating Eq. �1� with Eq. �4� yields the relation between the
umbers of vertices and turning-pair edges,

e = v − 1 �5�

Similarly, the numbers of turning-pair edges ei and vertices vi
f the ith KU in a geared mechanism can be related as

vi = ei + 1 �6�

Collecting all u fractionated KUs in a geared mechanism and
aking use of Eqs. �2� and �6� yield the total number of vertices

f gear mechanisms

�
1

u

vi = �
1

u

�ei + 1� = �
1

u

�hi + 2� = �
1

u

hi + 2u = h + 2u �7�

Substituting Eq. �5� in Eq. �1�, number of vertices in the graph
epresentation of geared mechanisms can be expressed as

v = F + h + 1 �8�
Subtracting Eq. �7� from Eq. �8� yields the difference between

he numbers of vertices of the graph representation and fraction-
ted KU graph of gear mechanisms

R = �
1

u

vi − v = �h + 2u� − �F + h + 1� = 2u − F − 1 �9�

Equation �9� indicates that the difference between the numbers
f vertices in these two graphs is determined by the number of
ractionated KUs and the DOF of geared mechanisms. Normally,
he number of vertices for all fractionated KUs is more than that
f a graph representation due to the common linkages, where
ome common vertices are counted repeatedly. This implies that
he number of repeated vertices is determined by the number and
he types of common linkages of KUs. Hence, the topological
onfiguration of KUs in a geared mechanism would be discussed
rom the perspective of common linkages as follows.

3.3 Configuration of KUs. Since a KU is formed by at least
ne fundamental circuit, the maximum number of KUs in a geared
echanism is limited by the number of gearing-pair edges of the
echanism. Besides, since a nonfractionated geared mechanism

tself is a KU �7�, the minimum number of KUs is equal to 1. In
his paper, the structural characteristics of geared mechanisms of
p to four KUs will be explored as follows. Note that, as observed
rom Eq. �8�, since the minimum numbers of links in one- and
wo-DOF geared mechanisms of up to four KUs are six and seven,

ne- and two-DOF geared mechanisms of up to six and seven
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links, respectively, are concerned.
Consider the two-link chain type connection of KUs, as shown

in Fig. 1�f� in which two common vertices 1 and 5 shared by the
two KUs are counted twice. Since the two repeated vertices are
accountable for each two-link chain type connection, the total
number of repeated vertices in a fractionated KU graph can be
written as

R = 2C2 �10a�

where C2 denotes the number of two-link chain type common
linkages appearing in a fractionated geared mechanism.

In a similar manner, consider the coaxial-triangle type connec-
tion, as shown in Fig. 2�c�, where three common vertices 2, 4, and
5 shared by the three KUs are counted twice. Hence, there are
three repeated vertices for each coaxial-triangle type connection.
However, if any two coaxial-triangle type common linkages are
connected, such a relation has to be modified accordingly. Con-
sider the two-DOF, seven-link GKC of graph 5-17-1 �15�, as
shown in Fig. 3�a�. This geared mechanism is kinematically frac-
tionated into four KUs, forming two coaxial-triangle type com-
mon linkages connected in series, as shown in Figs. 3�b� and 3�c�.
The number of repeated common vertices is equal to three times
of the number of coaxial-triangle type common linkages sub-
tracted by the number of any two coaxial-triangle type common
linkages connected in series. Thus, the number of repeated verti-
ces can be expressed as

R = 3C3 for C3 � 2 �10b�
and

R = 3C3 − �C3 − 1� = 2C3 + 1 for C3 � 2 �10c�

where C3 denotes the number of coaxial-triangle type connection
in a fractionated geared mechanism.

For geared mechanisms composed of any combination of two-
link chain type and/or coaxial-triangle type common linkages, R

Fig. 3 Two-DOF, seven-link GKC of graph 5-17-1 †15‡. „a…
Graph representation. „b… Fractionated KUs with two coaxial-
triangle type common linkages. „c… Block configuration of KUs.
„d… Kinematic propagation path VII„a… of KUs.
can be rewritten as
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R = 2C2 + 3C3 for C3 � 2 �11a�
nd

R = 2C2 + 2C3 + 1 for C3 � 2 �11b�
quating Eqs. �11a� and �11b� with Eq. �9� yields

2C2 + 3C3 = 2u − F − 1 for C3 � 2 �12a�
nd

2C2 + 2C3 = 2u − F − 2 for C3 � 2 �12b�
Equations �12a� and �12b� show that if the number of KUs and

he DOF of a geared mechanism are given, the numbers of two-
ink chain type and coaxial-triangle type common linkages can be
etermined. As a consequence, seven admissible block configura-
ions I–VII of one- and two-DOF geared mechanisms of up to
our KUs are obtained and tabulated in the second column of
able 1. As observed from the table, the coaxial-triangle type
ommon linkages are only found in two-DOF geared mechanisms.
his can be easily realized as follows. Considering a one-DOF
eared mechanism, i.e., F=1, the values on both sides of Eq.
12a� have to be odd and those of Eq. �12b� have to be even. In
rder for the left-hand-side values of these two equations satisfy
he conditions, C3 has to be zero for C3�2, and there is no pos-
ible solution of C3 for C3�2.

According to the configurations of Table 1, previously enumer-
ted geared mechanisms of one-DOF up to six links and two-DOF
p to seven links are examined and categorized. The result is
hown in Table 2, with geared mechanisms represented by their
raph numbers. Such classification of geared mechanisms not
nly reveals the structural characteristics of the enumerated
eared mechanisms; it also benefits the disclosure of transmission
f motion inside the mechanisms.

It is worthy to note that the graph numbers of the geared
echanisms of one-DOF up to five links are referred to the atlas

f epicyclic gear trains of Freudenstein �1�, the graph numbers of
ne-DOF six-link geared mechanisms are referred to Tsai �14�,
nd those of two-DOF up to seven links are referred to Tsai and
in �15�.

Kinematic Propagation Paths
A kinematic propagation path of motion represents the trans-
ission of motion between KUs within a geared mechanism.
ased on the configurations of KUs shown in Table 1, possible
inematic propagation paths can be established once input and
utput links are adequately selected.

In order to maintain the mobility of the geared mechanisms, the
ollowing general rules have to be fulfilled:

R1: Each KU has one local input. Since the DOF of a KU is
qual to 1, any KU possesses only one local input.

R2: The number of global inputs is equal to the DOF of a
eared mechanism. Therefore, geared mechanisms pertaining to
onfigurations I–IV have one global input, while those belonging
o configurations V–VII possess two global inputs. Although the
lobal input�s� of a geared mechanism can be designated at any
U, kinematic propagation paths with certain arrangements have

o be excluded. Referring to the GKC of graph 4-1-1in Fig. 2�b�,
he block configuration of the graph is formed by KU1, KU2, and
U3, as shown in Figs. 2�c� and 2�d�. According to R2, this two-
OF geared mechanism has two global inputs. Any two of the

hree KUs can be used as inputs. However, inputs at KU1-KU2,
U2-KU3, or KU3-KU1 are considered to be identical to each
ther due to the symmetry of configuration with regard to the
opological perspective. Hence, we have the following.

R3: Assignment of global input(s) at topologically symmetric
U(s) has to be avoided. Followed by the determination of global

nput�s�, global output�s� of a geared mechanism has to be chosen.
onsider a six-link GKC of graph 6205-1 �14� of Fig. 4�a�. If

ertex 2 �or 6� is selected as the input, as indicated in Fig. 4�b�,

82602-4 / Vol. 130, AUGUST 2008
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the adequate output will be vertex 6 �or 2�. This way, transmission
path of motion propagates from the input to pass through entire
GKC, i.e., from KU1 to KU3 or vice versa. Since the kinematic
relation relies on all KUs, there is no redundant link in the geared
mechanism. On the other hand, if a vertex other than 6 �or 2�, say,
4, is selected as the output, transmission of motion does not pass
through all KUs, leaving 6 �or 2� as a redundant link. Note that
since vertices 2 and 6 in Fig. 4�b� are on the open ends of the
heavy-edged path of KU1 and KU3, respectively, but are not com-
mon to KU2, they are referred to end vertices �7�. Hence, to pre-
vent redundancy of links, we have the following.

R4: KU(s) with end vertices not utilized as the global input(s)
are bound to be the global output(s). Although the number of
local inputs for each KU is 1, the number of local outputs of a KU
is not limited to 1. If more than one KU is adjacent to and driven
by a KU, the motion of the driving KU is transmitted to its fol-
lowing adjacent KUs simultaneously. Hence, we have the follow-
ing.

R5: The number of local outputs of a KU depends on the num-
ber of its following KUs. Referring to propagation path IV�b� of
Table 1, KU2 has two local outputs: One is via the first propaga-
tion path of KU2 to KU1, and the other is through the second
propagation path of KU2 to KU3. As previously stated, there are
two types of KU connections in geared mechanisms, and the man-
ners for the transmission of motion of these two types are different
in nature.

R6: In the two-link chain type configuration, the local output of
a KU is the local input of its next KU, while in the coaxial-
triangle type configuration, the local input of a KU is determined
by local outputs of its two preceding KUs. Referring to the two-
link chain type configuration of Fig. 1�g�, the local input of KU2 is
the local output of KU1, as shown in Fig. 1�h�, while, referring to
the coaxial-triangle type configuration of Fig. 2�d�, the local input
of KU3 is summed by both local outputs of KU1 and KU2 and
hence is represented by an addition node, as shown in Fig. 2�e�.

Applying R1–R6 to the block configurations I–VII in Table 1,
six admissible propagation paths of motion are obtained for the
one-DOF configurations as shown in and seven paths are identi-
fied for the two-DOF configurations, as shown in Table 1.

5 Gain of Kinematic Paths
The kinematic propagation path in a geared mechanism repre-

sents the motion transmitted from one KU to another, resembling
a signal processing problem where the overall system is made up
of control unit blocks. In a geared mechanism, KUs are consid-
ered as basic blocks, while angular displacement or angular ve-
locity is considered as a signal. Based on this concept, the global
gain between input and output links of geared mechanisms can be
derived in virtue of block diagram algebra.

Referring to the system in Fig. 1�h�, signal S1 is generated after
input I1 passes KU1. Then,

S1 = g1I1 �13�

where g1 is the local gain of KU1. Output O1 is generated after
signal S1 goes through KU2 and becomes

O1 = g2S1 = g1g2I1 �14�

where g2 is the local gain of KU2 and g1g2 is the global gain of
the geared mechanism in Fig. 1�h�.

For convenience, the gain of an output and its associated input
in a multi-input and multi-output �MIMO� system are expressed in
a matrix form as

�O�n�1 = �G�n�m�I�m�1 �15�

where n and m, respectively, are the numbers of outputs and in-
puts, G is an n�m gain matrix, I is an m�1 input column matrix,
and O is an n�1 output column matrix.

Referring to the propagation path in Fig. 2�e�, the global output

of the GKC of graph 4-1-1 can be easily derived in a similar
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anner to Eqs. �13� and �14�. Since there are two inputs in the
eared mechanism, the output can be represented as the matrix

Table 1 Block configurations of KUs and the kine
nisms. One-DOF: I–IV. Two-DOF: V–VII
ultiplication of a gain row matrix by an input column matrix as

ournal of Mechanical Design
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�O1� = �g1g3I1 + g2g3I2� = �g1g3 g2g3��I1 I2�T �16�

tic propagation paths and gains of geared mecha-
ma
where g1, g2, and g3 are the local gains of KU1, KU2, and KU3.
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As mentioned earlier, certain KUs can have more than one local
utput. Therefore, additional local gain due to various propagation
aths of the same KU is required. Let g1�, g2�, g3�, etc., denote the
dditional local gains of KU1, KU2, and KU3, etc., respectively.
eferring to the kinematic gain path VII�a� in Fig. 3�d�, signal S1

s generated after input I1 passes KU2 and becomes

S1 = g2I1 �17�

here g2 is the local gain of the first propagation path of KU2.

able 2 Classification of geared mechanisms with graph
umbers

No. u v Graph number �1,14,15�

I 1 3 3000
4 2200-2a, 2200-2b
5 1400-1-3, 2210-1-1a, 2210-1-1b, 2210-1-1c,

2210-1-4a, 2210-1-4b, 3020-1-3b
6 6401-1, 6401-2, 6401-3, 6401-4, 6401-5,

6401-6, 6401-7, 6401-8, 6401-9, 6401-10,
6401-11, 6503-1, 6503-2, 6503-3, 6503-4,
6503-5, 6503-6, 6503-7, 6503-8, 6503-9,
6503-10, 6503-11, 6601-1, 6601-2, 6601-3,
6601-4, 6601-5

II 2 4 2200-1
5 1400-1-4, 1400-1-7, 2210-1-2b, 2210-6,

3020-1-4b
6 6101-1, 6101-2, 6101-3, 6103-1, 6103-2,

6103-3, 6103-4, 6201-1, 6201-2, 6201-3,
6203-1, 6203-2, 6203-3, 6203-4, 6206-1,
6206-2, 6206-3, 6301-1, 6301-2, 6301-3,
6301-4, 6301-5, 6305-1, 6305-2, 6305-3,
6305-4, 6305-5, 6402-1, 6402-2, 6403-1,
6403-2, 6404-1, 6404-2, 6501-1, 6501-2,
6502-1, 6506-1, 6506-2

III 3 5 2210-7
6 6102-1, 6102-2, 6202-1, 6202-2, 6205-1,

6205-2, 6302-1, 6303-1, 6303-2, 6304-1,
6306-1, 6306-2, 6504-1, 6505-1,

IV 4 6 6204-1

V 3 6 4-1-1, 4-1-2, 4-2-1
7 5-1-1, 5-1-2, 5-1-3, 5-1-4, 5-2-1, 5-2-2,

5-2-3, 5-2-4, 5-3-1, 5-3-2, 5-4-1, 5-4-2,
5-4-3, 5-4-4, 5-5-1, 5-5-2, 5-5-3, 5-5-4,
5-5-5, 5-6-1, 5-6-2, 5-6-3, 5-6-4, 5-6-5,
5-7-1, 5-7-2, 5-7-3, 5-7-4, 5-8-1, 5-9-1,
5-9-2, 5-19-1, 5-19-2, 5-20-1

VI 4 7 5-10-1, 5-10-2, 5-11-1, 5-11-2, 5-12-1,
5-12-2, 5-13-1, 5-13-2, 5-14-1, 5-14-2,
5-14-3, 5-15-1, 5-15-2, 5-18-1

VII 4 7 5-16-1, 5-17-1

ig. 4 One-DOF, six-link GKC of graph 6205-1 †14‡. „a… Graph

epresentation. „b… Fractionated KUs and end vertices.
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S2 is the signal after input I2 passes KU1 and S3 equals the
summation of S1 and S2; thus,

S2 = g1I2 �18�

where g1 is the local gain of KU1, and

S3 = S1 + S2 = g2I1 + g1I2 �19�

Similarly, the output signal of KU3, S4, can be written as

S4 = g3S3 = g3�g2I1 + g1I2� = g2g3I1 + g1g3I2 �20�

where g3 is the local gain of KU3.
Since KU2 has two local outputs, the second output, S5, is gen-

erated through the second path of KU2 and is expressed as

S5 = g2�I1 �21�

where g2� is the local gain of the second propagation path of KU2.
Since signal S6 is the signal composed of S4 and S5 and O1 is

the local output of KU4, they are obtained as

S6 = S4 + S5 = g2g3I1 + g1g3I2 + g2�I1 �22�

and

O1 = g4S6 = g4�g2g3I1 + g1g3I2 + g2�I1� = g2g3g4I1 + g1g3g4I2

+ g2�g4I1 = �g2g3g4 + g2�g4�I1 + g1g3g4I2 �23�

where g4 is the local gain of KU4.
Expressing the local output O1 in a matrix form, Eq. �23� be-

comes

�O1� = �g2g3g4 + g2�g4 g1g3g4��I1 I2�T �24�
Making use of the derivation procedure presented in this sec-

tion, all corresponding kinematic gain matrices of the admissible
propagation paths are obtained. The results are shown in the
fourth column of Table 1. Note that since an entity in a gain
matrix shows the influence from a specific input to a prescribed
output, in a MIMO system, if certain inputs and outputs are not
related to each other, their associated gains would be zero.

Once the global output of a geared mechanism is obtained in
terms of the gains of the fractionated KUs, the actual output dis-
placement of the geared mechanism can be readily obtained. Con-
sider the three-KU geared mechanism of graph 4-1-1 shown in
Fig. 2�e�. Since angular displacements �1,2 and �3,2 are the local
inputs of KU1 and KU2, respectively, their local gains can be
obtained as

g1 = − e1,4 = − �4,2/�1,2 �25�

g2 = e3,5 = �5,2/�3,2 �26�

where �4,2 and �5,2 are the local outputs of KU1 and KU2, respec-
tively.

Note that �i,j represents the relative angular displacement of
vertex i with respective to vertex j and can be expressed as �i,j
=�i,k−�i,k. The local gain of KU3 is

g3 = e5,6 = �6,4/�5,4 �27�

where �6,4 and �5,4 are the local output and input of KU3, respec-
tively.

Note that the sign of gear ratio −e1,4 in Eq. �25� inherits the sign
of the angular output of KU1. Referring to the configuration of
KUs shown in Figs. 2�c� and 2�e�, the angular input displacement
of KU3 can be expressed as �5,4=�5,2−�4,2=�5,2+ �−�4,2�. Since
−�4,2 and �5,2 are the local outputs of KU1 and KU2, respectively,
the gear ratio is, thus, written as −e1,4.

Substituting Eqs. �25�–�27� in Eq. �16� yields

�O1� = ��6,4� = �g1g3 g2g3��I1 I2�T = �− e5,6e1,4 e5,6e3,5�
T
���1,2 �3,2� = ��− e5,6e1,4�1,2� + e5,6e3,5�3,2� �28�
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Kinematic Classification
Since the entities in a gain matrix represent the kinematic rela-

ions between input and output links of geared mechanisms,
ropagation paths of geared mechanisms are classified according
o the forms of entities in gain matrices to disclose the kinematic
ehaviors of geared mechanisms. Three types of propagation path
re obtained as follows:

1. Cascade type. For the cascade type, there is no feedback or
eed-forward loop existing in the block diagram. Entities in a gain
atrix are all products of local gains. All propagation paths other

han VII�a� and VII�b� in Table 1 belong to this type.
2. Parallel type. Propagation paths with any downstream KU

eceiving signals from the same upstream KU via different propa-
ation paths are referred to the parallel type. Referring to the
ropagation path shown in Fig. 3�d�, KU4 receives two signals as
ts input: one is fed directly from KU2, and the other comes indi-
ectly from KU2 via KU3. For this type of propagation path, there
xists at least one entity in the gain matrix constituted by summa-
ion of products of local gains due to the composition of a feed-
orward loop in the block diagram. The propagation path VII�a� in
able 1 is pertains to this type.
Feedback type. For the feedback type, there exists at least one

eedback loop in the propagation path and the entity of the gain
atrix is in fractional form. Referring to the propagation path
II�b� in Table 1, since the feedback loop contains KU2 and KU3,
oth entities of the gain matrix are in fractional form, in which
1−g3g2�� is the denominator and �g1g3g2 g4g2� is the numerator.

According to the classification of gain types, unique kinematic
ehaviors of geared mechanisms are expected. For those one- and
wo-DOF geared mechanisms tabulated in Table 2, one is able to
ook up the table, choose the fit type and pick up the desired graph
umber to proceed further in the design process. Hence, based on
he functional requirements and making use of Table 2, design of
ne- and two-DOF geared mechanisms of up to six and seven
inks, respectively, in the atlas can be easily accomplished.

Conclusion
A new approach based on the concept of kinematic fraction-

tion is successfully applied in the identification of the topological
haracteristics of geared mechanisms and in the determination of

he kinematic relations between input and output links. Using KUs

ournal of Mechanical Design
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as basic blocks, admissible configurations of up to four KUs in
one- and two-DOF geared mechanisms are unveiled. By ad-
equately designating input�s� and output�s�, all possible propaga-
tion paths of motion of geared mechanisms are constructed, and
their corresponding gains are obtained by block diagram algebra.
As a result, the kinematic behaviors of geared mechanisms can be
classified. This, in turn, provides the design process with kine-
matic insight into the synthesis of geared mechanisms with up to
four KUs.
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